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Introduction

Introduction

A mean function may not necessarily be a linear combination of terms. Some examples:

E (Y |X = x) = θ1 + θ2(1− exp(−θ3x)) (1)

E (Y |X = x) = β0 + β1ψS(x , λ) (2)

where ψS(x , λ) is the scaled power transformation, defined as

ψS(X , λ) =

{
(Xλ − 1)/λ if λ 6= 0

log(X ) if λ = 0
(3)

Once λ has been chosen, the function becomes, in the sense we have been describing,
linear in its terms, just as a quadratic in X can be viewed as linear in X and X 2.

James H. Steiger (Vanderbilt University) Nonlinear Regression 3 / 36



Introduction

Introduction

Nonlinear mean functions often arise in practice when we have special information about
the processes we are modeling.
For example, consider again the function E (Y |X = x) = θ1 + θ2(1− exp(−θ3x)). As X
increases, assuming θ3 > 0, the function approaches θ1 + θ2. When X = 0, the function
value is θ1, representing the average growth with no supplementation. θ3 is a rate
parameter.
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Estimation for Nonlinear Mean Functions

Estimation for Nonlinear Mean Functions

Our general notational setup is straightforward. We say that

E (Y |X = x) = m(x,θ) (4)

where m is a kernel mean function
The variance function is

Var(Y |X = xi ) = σ2/wi (5)

where the wi are known positive weights, and σ2 is an unknown positive number.
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Estimation for Nonlinear Mean Functions
Iterative Estimation Technique

Nonlinear regression is a complex topic.
For example, the classic book by Seber and Wild (1989) is over 700 pages.
We will discuss the Gauss-Newton algorithm without going into the mathematics in detail.
On the next slide, I discuss how the algorithm works, as described by Weisberg.
His account is somewhat abbreviated.
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Estimation for Nonlinear Mean Functions
Iterative Estimation Technique

We need to minimize

RSS(θ) =
n∑

i=1

wi (yi −m(xi ,θ))2 (6)

This is done using Gauss-Newton iteration, with the following algorithm.
1 Choose starting values θ(0) for θ, and compute RSS(θ(0)).
2 Set the iteration counter at j = 0.
3 Compute U(θ(j)) and ê(j) with ith element equal to yi −m(xi ,θ(j)).
4 Compute the new estimate as

θ(j+1) = θ(j) + [U(θ(j))′WU(θ(j))]−1U(θ(j))′Wê(j) (7)

5 Compute RSS(θ(j+1)).
6 If RSS(θ(j))− RSS(θ(j+1)) > tol1, and j ≤ itmax and RSS(θ(j+1)) > tol2, go to step 3, else

stop.

U(θ) is a matrix of derivatives known as the score matrix. If θ has k elements, then the
n × k matrix U has element uij = ∂m(xi ,θ)/∂θj evaluated at the current estimate of θ.
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Estimation for Nonlinear Mean Functions
Iterative Estimation Technique

Generally, the Gauss-Newton algorithm will converge to a solution as long as you start
reasonably close to the solution, and certain other problems do not occur.
However, problems do occur, and Weisberg’s account does not deal with them.
In particular, in some cases, the step will be too long, and the function will not decrease
because you have stepped over the point where the minimum occurs.
You can tell this has happened, because the vector of derivatives of the function with
respect to the values of θ will not be near zero, even though the function has increased.
You have moved “in the right direction,” but too far. A solution to this is called
“backtracking.” You simply multiply the step by a constant less than one, and try again
with the reduced step that is going in the same direction, but not as far.
Many unsophisticated algorithms use what is called “step-halving.” Each time you
backtrack, the initial step is multiplied by 1/2 and the iteration is retried. This keeps
going on until the function is reduced, or a maximum number of step-halves has occurred.
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Large Sample Inference

Large Sample Inference

Under certain regularity conditions, the final estimate θ̂ will be approximately normally
distributed,

θ̂ ∼ N(θ∗, σ2[U(θ∗)′WU(θ∗)]−1) (8)

We can obtain a consistent estimate of the covariance matrix of the estimates by
substituting the estimates θ̂ in place of the true minimizing values (that we would obtain
if we had the population at hand instead of the sample) in the above formula. Thus,

V̂ar(θ̂) = σ̂2[U(θ̂)′WU(θ̂)]−1 (9)

where

σ̂2 =
RSS(θ̂)

n − k
(10)

and k is the number of parameters estimated in the mean function.
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Large Sample Inference

Large Sample Inference

Weisberg is careful to stress that, in small samples, large-sample inferences may be
inaccurate.
He then goes on to investigate some examples of nonlinear regression in practice, using
data on turkey growth.
Let’s start with a little artificial example of our own.
Suppose Y and X fit the model

E (Y |X = x) = X 2 − 1 (11)

with Var(Y |X = x) = σ2

We can easily create some artificial data satisfying that model prescription.
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An Artificial Example

An Artificial Example

The following R code generates data fitting the model

> x <- 1:100/10

> y <- x^2 - 1 + rnorm(100,0,.25)

Now, suppose we suspect that the model is of the form E (Y |X = x) = xθ1 − θ2, but we
don’t know the values for the θs.
We can use nls as follows

> m1 <- nls(y~x^theta1 - theta2,start=list(theta1=.5,theta2=.5))

> summary(m1)

Formula: y ~ x^theta1 - theta2

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta1 2.0002158 0.0004066 4919.15 <2e-16 ***

theta2 0.9531194 0.0389960 24.44 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2797 on 98 degrees of freedom

Number of iterations to convergence: 5

Achieved convergence tolerance: 1.409e-06

nls did quite well at estimating the correct structure.
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An Artificial Example

An Artificial Example

Note that the Gauss-Newton algorithm requires derivatives, and if these derivatives do
not exist or do not have real values, the method will fail.
Try repeating the previous example, but with values of X extended into the negative
values.

> x <- -1:100/10

> y <- x^2 - 1 + rnorm(102,0,.25)

> m2 <- nls(y~x^theta1 - theta2,

+ start=list(theta1=.5,theta2=.5))

The rather cryptic error message results from an inability to calculate the derivative, i.e.

∂X θ1 + θ2

∂θ1
= X θ1 log(X ) (12)

The derivative is −∞ when X = 0, and takes on imaginary values for negative values of
X .
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An Artificial Example
Turkey Growth Example

An experiment was conducted to study the effects on turkey growth of different amounts
A of methionine, ranging from a control with no supplementation to 0.44% of the total
diet.
The experimental unit was a pen of young turkeys, and treatments were assigned to pens
at random so that 10 pens get the control (no supplementation) and 5 pens received each
of the other five amounts used in the experiment, for a total of 35 pens.
Pen weights, the average weight of the turkeys in the pen, were obtained at the beginning
and the end of the experiment three weeks later. The response variable is Gain, the
average weight gain in grams per turkey in a pen. The weight gains are in the turk0 data
set.
The primary goal of this experiment is to understand how expected weight gain
E (Gain|A) changes as A is varied.
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An Artificial Example
Turkey Growth Example

Here is what a plot reveals.

> data(turk0)

> attach(turk0)

> plot(A,Gain)
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An Artificial Example
Turkey Growth Example

We can see what appears to be an exponential function with an asymptote at around 810.
A versatile asymptotic function is the two-parameter exponential augmented with an
intercept, i.e.

E (Gain|A) = θ1 + θ2(1− exp(−θ3A)) (13)

It helps to have starting values for the parameters, so let’s examine the behavior of this
function.
The function takes on a value of θ1 at A = 0, so θ1 is clearly the intercept, which, we can
see from the plot, is roughly 620.
When A =∞, the function has an asymptote at θ1 + θ2, so θ2 is the difference between
the asymptote and θ1. A reasonable estimate is 800− 620 = 180.
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An Artificial Example
Turkey Growth Example

Getting an estimate for θ3 is more involved. One approach is to solve equations for a
subset of the data.
Looking at the plot, when A = .16, Gain is approximately 750, so plugging in these values
along with our prior estimates for θ1 and θ2 gives

750 = 620 + 180(1− exp(−θ3(.16))) (14)

130 = 180(1− exp(−θ3(.16))) (15)

130/180− 1 = − exp(−θ3(.16)) (16)

log(50/180) = −θ3(.16) (17)

− log(50/180)/.16 = θ3 (18)

This evaluates to 8.005837 in R.
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An Artificial Example
Turkey Growth Example

We can check out how this approximation looks by adding our curve to the plot of the
data.

> plot(A,Gain)

> curve(620+180*(1-exp(-8*x)),add=T,col="red")
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An Artificial Example Turkey Growth Example

An Artificial Example
Turkey Growth Example

The fit looks good with the starting values, so we should be able to get convergence with
nls

> m1 <- nls(Gain ~ theta1 + theta2 *

+ (1 - exp(-theta3 * A)),

+ start=list(theta1=620,theta2=180,theta3=8))

> summary(m1)

Formula: Gain ~ theta1 + theta2 * (1 - exp(-theta3 * A))

Parameters:

Estimate Std. Error t value Pr(>|t|)

theta1 622.958 5.901 105.57 < 2e-16 ***

theta2 178.252 11.636 15.32 2.74e-16 ***

theta3 7.122 1.205 5.91 1.41e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.66 on 32 degrees of freedom

Number of iterations to convergence: 4

Achieved convergence tolerance: 6.736e-06
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An Artificial Example
Turkey Growth Example

Plotting the final fitted function shows only minor change from our starting values.

> plot(A,Gain)

> curve(620+180*(1-exp(-8*x)),add=T,col="red")

> curve(622.958+178.252*(1-exp(-7.122*x)),col="blue" ,add=T)
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An Artificial Example Turkey Growth Example

An Artificial Example
Turkey Growth Example

Using the repeated observations at each level of A, we can perform a lack-of-fit test for
the mean function.
The idea, as you recall from Weisberg section 5.3, is to compare the nonlinear fit to the
one-way analysis of variance, using the levels of the predictor as a grouping variable.
The residual variance in ANOVA is computed and pooled strictly within-group, and
consequently is a measure of error variance that does not depend on the model we fit.
That estimate of variance is compared to the estimate obtained from fitting our
exponential model.
As the logic goes, failure to reject supports the idea that the model is reasonable.
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An Artificial Example
Turkey Growth Example

> p1 <- lm(Gain~as.factor(A),turk0)

> xtablenew(anova(m1,p1))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 32 12367.42
2 29 9823.60 3 2543.82 2.50 0.0789

which F = 2.50 with (3, 29) df, for a significance level of 0.08, so we cannot reject the notion
that the fit appears adequate.
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An Artificial Example
Three Sources of Methionine

The complete turkey experiment, with data in the file turkey, actually investigated 3
sources of methionine, which we might call S1,S2, S3.
We wish to fit response curves separately for the 3 sources, and test whether they are
different, and how well they fit.
We quickly realize that, for A = 0, it doesn’t matter what the source was, so the
expected response is the same at A = 0 for all 3 sources.
Treating the Si as dummy variables, we may write

E (Gain|A = a,S1, S2,S3) = θ1 + S1[θ21(1− exp(−θ31a))]

+ S2[θ22(1− exp(−θ32a))]

+ S3[θ23(1− exp(−θ33a))]
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An Artificial Example
Three Sources of Methionine

Another reasonable function has common intercepts and asymptotes, but separate rate
parameters:

E (Gain|A = a, S1,S2,S3) = θ1 + θ2{S1[1− exp(−θ31a)]

+ S2[1− exp(−θ32a)]

+ S3[1− exp(−θ33a)]}

Even more restricted is the model that specifies a common exponential function for all 3
sources:

E (Gain|A = a,S1, S2,S3) = θ1 + θ2(1− exp(−θ3A)) (19)
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An Artificial Example
Three Sources of Methionine

We use weighted least squares nonlinear regression.

> data(turkey)

> tdata <- turkey

> tdata <- turkey

> # create the indicators for the categories of S

> tdata$S1 <- tdata$S2 <- tdata$S3 <- rep(0,dim(tdata)[1])

> tdata$S1[tdata$S==1] <- 1

> tdata$S2[tdata$S==2] <- 1

> tdata$S3[tdata$S==3] <- 1

> m4a <- nls( Gain ~ th1 + th2*(1-exp(-th3*A)),weights=m,

+ data=tdata,start=list(th1=620,th2=200,th3=10))

> m3a <- nls( Gain ~ th1 + th2 *(

+ S1*(1-exp(-th31*A))+

+ S2*(1-exp(-th32*A))+

+ S3*(1-exp(-th33*A))),weights=m,

+ data=tdata,start= list(th1=620, th2=200, th31=10,th32=10,th33=10))

> m2a <- nls(Gain ~ th1 +

+ S1*(th21*(1-exp(-th31*A)))+

+ S2*(th22*(1-exp(-th32*A)))+

+ S3*(th23*(1-exp(-th33*A))),weights=m,

+ data=tdata,start= list(th1=620,

+ th21=200,th22=200,th23=200,

+ th31=10,th32=10,th33=10))

> m1a <- nls( Gain ~ S1*(th11 + th21*(1-exp(-th31*A)))+

+ S2*(th12 + th22*(1-exp(-th32*A)))+

+ S3*(th13 + th23*(1-exp(-th33*A))),weights=m,

+ data=tdata,start= list(th11=620,th12=620,th13=620,

+ th21=200,th22=200,th23=200,

+ th31=10,th32=10,th33=10))
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An Artificial Example
Three Sources of Methionine

Reproducing the ANOVA table, we see that the relaxed models don’t appear to improve
significantly on the most restricted model.

> xtablenew(anova(m4a,m3a,m2a,m1a))

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1 10 4326.08
2 8 2568.39 2 1757.69 2.74 0.1242
3 6 2040.01 2 528.38 0.78 0.5011
4 4 1151.15 2 888.85 1.54 0.3184

Note that the ANOVA method reports F values (shown in the above table) that disagree
slightly with the calculations (even with the errata) in chapter 11.
This is because these ANOVAs use as an estimate of error variance the model-derived
estimate from the model with the smaller residual sum of squares.
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An Artificial Example
Three Sources of Methionine

The calculation shown in the book uses σ̂2
pe , the ”model free” estimate obtained by

pooling within-group variances.

> sspe <- sum(tdata$SD^2*(tdata$m-1))

> dfpe <- sum(tdata$m-1)

> s2pe <- sspe/dfpe

> sspe; dfpe; s2pe

[1] 19916

[1] 57

[1] 349.4035
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An Artificial Example
Three Sources of Methionine

A test of model fit is not rejected, even for the most restricted model. The corrected
calculations are shown below.

> F = (4326.1/10)/s2pe

> F

[1] 1.238139

> 1-pf(F,10,57)

[1] 0.2874172
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Bootstrap Inference

Inference methods based on large samples depends on the rate of convergence to the
asumptotic result.
Large sample inference depends for its accuracy on a host of factors, including the way
the mean function was parameterized.
Weisberg suggests bootstrapping as a way to alert oneself to situations where the large
sample theory may not be working well.
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Bootstrap Inference
The Temperature Example

The data set segreg contains data on electricity consumption in KWH and mean
temperature in degrees F for one building on the University of Minnesota’s Twin Cities
campus for 39 months in 1988–1992.
As usual, higher temperature should lead to higher consumption. (Steam heating
simplifies things by essentially eliminating the use of electricity for heating.)
The mean function plotted to the data is

E (C |Temp) =

{
θ0 Temp ≤ γ
θ0 + θ1(Temp − γ) Temp > γ

The interpretation of this is pretty straightforward. What do the parameters mean? (C.P.)
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Bootstrap Inference
The Temperature Example

The mean function can be rewritten as

E (C |Temp) = θ0 + θ1(max(0,Temp − γ)) (20)

Plotting C vs. Temp (see next slide) suggests starting values of about 73,0.5, and 40 for
θ0, θ1, and γ, respectively.
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Bootstrap Inference
The Temperature Example

> data(segreg)

> attach(segreg)

> plot(Temp,C)
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Bootstrap Inference
The Temperature Example

This can be fit easily with nls

> m1 <- nls(C ~ th0 + th1*(pmax(0,Temp-gamma)),

+ data=segreg,start=list(th0=70,th1=.5,gamma=40))

> summary(m1)

Formula: C ~ th0 + th1 * (pmax(0, Temp - gamma))

Parameters:

Estimate Std. Error t value Pr(>|t|)

th0 74.6953 1.3433 55.607 < 2e-16 ***

th1 0.5674 0.1006 5.641 2.10e-06 ***

gamma 41.9512 4.6583 9.006 9.43e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.373 on 36 degrees of freedom

Number of iterations to convergence: 2

Achieved convergence tolerance: 1.673e-08

From the plot, one might get the impression that information about the knot is
asymmetric: γ could be larger than 42 but is very unlikely to be muchless than 42.
We might expect that, in this case, asymptotic normal theory might be a bad
approximation.
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Bootstrap Inference
The Temperature Example

We perform B=999 bootstrap replications, and display the scatterplot matrix of
parameter estimates.
We use the very valuable boot.case function.

> pdf("ALR_FIG1105.PDF", onefile=T)

> set.seed(10131985)

> s1.boot <- boot.case(m1,B=999)

> library(car)

> scatterplotMatrix(s1.boot,diagonal="histogram",

+ col=palette(),#[-1],

+ lwd=0.7,pch=".",

+ var.labels=c(expression(theta[1]),

+ expression(theta[2]),expression(gamma)),

+ ellipse=FALSE,smooth=TRUE,level=c(.90))
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Bootstrap Inference
The Temperature Example
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Bootstrap Inference
The Temperature Example

The plot displays both the substantial nonnormality of the estimates of θ2 and γ, but also
the correlation between the various parameter estimates.
ALR Table 11.5 compares the estimates and confidence intervals generated by the
asymptotic normal theory and the bootstrap.
There are some non-negligible differences.
Weisberg also provides a scatterplot matrix for bootstrapped parameter estimates from
the turkey data, demonstrating that the asymptotic normal theory is much more
appropriate for those data than for the temperature data.
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FIG. 11.6 Scatterplot matrix of bootstrap estimates for the turkey growth data. Two of the replicates
were very different from the others and were deleted before graphing.

In contrast, Figure 11.6 is the bootstrap summary for the first source in the turkey
growth data. Normality is apparent in histograms on the diagonal, and a linear
mean function seems plausible for most of the scatterplots, and so the large-sample
inference is adequate here.

Table 11.5 compares the estimates and confidence intervals produced by large-
sample theory, and by the bootstrap. The bootstrap standard errors are the standard

TABLE 11.5 Comparison of Large-Sample and Bootstrap Inference for the
Segmented Regression Data

Large Sample Bootstrap

θ0 θ1 γ θ0 θ1 γ

Estimate 74.70 0.57 41.95 Mean 74.92 0.62 43.60
SE 1.34 0.10 4.66 SD 1.47 0.13 4.81
2.5% 72.06 0.37 32.82 2.5% 71.96 0.47 37.16
97.5% 77.33 0.76 51.08 97.5% 77.60 0.99 55.59
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